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-~ ABSTRACT

In a recent paper P. J. Green obtained some conditional limit
theorems for the absorption time of left-continuous random walk. His
methods required certain distributions to have exponentially decreasing
tails., Here we take a different approach which will produce Green's
results under minimal conditions. Limit theorems are given for the

maximum as the initial position of the random walk tends to infinity.

Key words: 1left continuous random walk; maximum; absorption time;

1imit theorems; local limit theorems; renewal theorems.

1. INTRODUCTION

‘le consider a left-continuous random wailk {Sn:nso,l,...} on the
non-negative integers with {0} as an absorbing state. Specifically,
for j = 0,1,..., let

P{Sn+1 = Sn -1+ jISn} = pj (S

>0), =86 (S"-O)

n il

where we assume Po > 0» Po * Py < 1 and that {pj} has unit maximal

span. Write f(t) = [ pjtj. Recently Green (1976) has obtained ex-
j=0

pressions for the distribution of (i,N) where N 1is the time to
absorption and i = max{S i;n < N}. In the cases a = f'(1-) <1 he é
obtained some results on the tail behavior of M and 1imit theorems
for N as M +», However his methods of proof require conditions

which appear not to be necessary for the validity of the results. For

example when a = 1 his stated results involve only f'*'(1-) which




F’e 2.

must necessarily be finite, but their proofs require that f(s)
exists for |s| <1+ ¢ for some ¢ > 0.

lle shall derive alternative representations for some of Green's
quantities and use these together with renewal theorems and local
1imit theorems for the n-step transition probabilities of {Sn}
when a = 1 and, when a < 1, for an assocfated random walk with
positive drift, to obtain Green's results under minimal conditions.
When « < 1 we also obtain 1imit theorewms for N (as M +») under
some weaker moment assumptions (Theorems 4 and 5) and when a < 1

we obtain limit theorems for [l as S0 +o,

i 2. THE CASE OF ZERO DRIFT
For 0 s s <1; k,m=20,1,..., let

I (m,s) = E(s™im < m|Sg=k). (1)
Green (1976) has shown that

L (m,s) = v _ (s)/u (s)
where E " (s)tJ : PoS

4Eo"s HiCER
which exists if |t| < g(s) where g(s) is the least non-negative
solution of sf(t) = t. As is well known, (g(s)]k is the probability
: generating function (p.g.f.) of N when So = k. Now define
f(t) = sf(tg(s))/g(s) (0 <t g 1) which is a p.g.f. for each
s €(0,1]. Define the sequence of functions {uj(s):J-o.l....}

by uo(s) =1 and

@ J pos
td - 2
leuj(s) g(s) (F(t)-t) o

s
&
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whence Uj(s) = (g(s)]"'j uJ(s) and
M (m,s) = (9(s))* u_, (s)/u (s). (3)

Finally define {vj(s):Jso.l,...} by vo(s) =1 and
vj(s) = uJ(s) - u _l(s) (j=1,2,...) and hence
Pos(1-t)

L g
Z vj( s)t 0D (4)

and vJ(s) 20 (0 <s <1); see, for example, Yang (1973, p.448).

It follows from (3) that

P(M < xISg=k) = iy /Uy (5)
and Green (197€) has shown that
E(sNi>3) = g(s)v,(s)uy/v uy(s) (6)

and hence that knowledge of the asymptotic behavior of the wu's and

v's yields 1imit theorems for M and N. Here oy . vj(l) and

uy = uj(l).
It 1s pointed out in Pakes (1977) that
2
(n)gn tg(s)-t

where psg) . P(sn-JISO-i). and hence

) (n) s"(g(s)) It - g(s)_ﬁil_il_ TSNt
n .J 2 l T( ) - NTIS guft Section a

e
N N \"(-l.u"'. n
uSTIK AT

Thus we obtain the representation

vyls) = Po’(g('))".lnz ’gn;ﬂ’ ¢ NIRRT ey

mﬂﬂ‘h“‘“‘f ~ ST

Assume now that o = 1 and b = f''(l-) < =, We see that ‘ﬂ&




= = (n) ]
v pOGl.j+1 where Glj nzlplj is a Green's function.

Lemma 1 of Pakes (1977) then yields
vy Zpolb s uy ~ 2poj/b. (8)

The first relation is a direct consequence of a discrete renewal
theorem; we shall enlarge on this below.
Let now s = 5" exp(-eb/ZJZ) (j=1,2,...). It is easily seen

1/2).

that (g(sj))j + exp(-8 lle now make use of the local limit

theorem for pgg) derived in Pakes (1977):

;ug lbnpgg) - (Z/wb)llzjn'llzexp(-32/2bn)I* 0 (n+=). (9)
>

Observe that pj(n) = pgg)/clj defines the distribution of a random

variable (r.v.), A(j) say, via pj(n) = P(A(J) = n).
Letting n = ijJZ/b in (9), where R =% 2 0, we obtain from
(8) and (9)

(23%/b)p4(n) » o (x) = (2n1/2)"1 (732 exp(-1/ax)
which is the density of the stable law whose Laplace-Stieltjes trans-
form (L.S.T.) is exp(-ellz). It follows (Billingsley (1968) Theo-
rem 7.8) that

2 X
P(bA(J)/si® < x) » [ o(y)dy

0
and finally that

vi(s;) + (2py/b) exp(-20'/%)  (yom), (10)
Note that the convergence here is uniform for 0 < 6 < A < =,

Let wJ(e) = vj(sj) and y(6) represent the right hand side
of (10). Then

e A



j
-1 2 =1, 2=l 8.k 2,.2
37 0uyls4) = 377+ thwk(ek 13%) - w(ex®74%))

k=

J
+ J'lkilw(ekzljz). (11)

As j+= the last term on the right

1
* (2pg/b) I exp(-2x01/2) dx = (py/b)e1/2(1-exp(-201/%)).
0

Let 0 >e >1 be given. Then the second term on the right of ex-

pression (11)

c2e + 370 1 Ju (ek?/5%) - wiek?/s?)|
ej<ks]d

and j can be chosen so large that the summands < €.
Thus we find that
37huy(s )+ (po/0)o” V2 (1 - exp(-201/%)).

Combining this with (8) and (10) in (6) yields

Theorem 1. Let o =1 and b = f''(1-) < w, Then

P(bN/23% < x|M > §) + F(x) (§+=)
1/2.

where F has L.S.T. (exp(-ellz)) ellzcosech 0

Assume now that

f(t) = t + (1-¢)8 L((l-t)'l) (12)

where 1 < 6 2 and L(+) 1s slowly varying (s.v.) at infinity.

We then have

I ugt? = po/(1-6)° L((1-0)7Y)

3=0




and since {uj} is 2 non-decreasing sequence, a Tauberian theorem

for power series yields
uy ~ gl hr(els) (3+).

The following result is now an immediate consequence of (5).

Theorem 2. Suppose that (12) holds. Then

P(M < kx|Sg=k) » [(1 - x"1)*")81 (kew).

Equation (4) yields ZvjtJ = po/ (1 - h(t)) where
h(t) = (1 - f(t))/(1-t) is a p.g.f. The discrete renewal theorem
(Erickson (1970), eq.(2.3)) shows that if (12) holds and if
+ §-1. This also holds when 1 < § < 3/2

3/2 < § <1 then jvJ/uj
because the weights of the distribution defined by h are monotonic
and corollary 3A of Williamson (1968) then applies. We now have the
following generalization of results of Green (1976) and Lindvall (1976)

on the tail behavior of M.

Theorem 3. Suppose (12) holds. Then

lim §P(M > JISo'k) = (6-1)k.

jro

3. THE CASE OF NEGATIVE DRIFT

In this section we assume a < 1. The p.g.f. F(t) has mean
1 -9(s)/s9'(s) <1 (0 <s < 1) and hence (2) and the Tauberian
theorem for power series implies that

ug(s) T pog'(S)(slg(s))z (0 <s 515 §+=). (13)

Furthermore the 1imit function 1s continuous in [1 - ¢,1] (0 < € <1),

e A i oy T




whence by Dini's theorem the convergence at (13) is uniform with

respect to se[l - €,1]. In particular we have

Lemma 1. If o <1 and $j < 1, By 1 (j+=) then
uy(s3) > pg/(1 = a).

Now assume that there exists a solution, D, exceeding unity of
the equation f(t) = t and that the p.g.f. fD(t) = f(Dt)/D can be

expanded as

f(t) = 1 - 671-0)% L((1-0)7Y (6 c521)
or

1 - a(1-t) + 67 1(1-t)¢ L((1-0)7Y) (1 <6 5 2)

£(t)

where in the latter case 1 < a = f'(D-) <o and L(e) 1is S.V. at
infinity. In either case the least positive solution, q, of
fo(t) =t is q = p°. Let 9p(s) = qg(s); we have
gD(s) = st(gD(s)). Substitute tD for t in (7) to obtain
a,(s)-t -
§ pgg)snDttj = 0t 22— =] qgg)s"tj (14)
n,Jj21 st(t)-t n,j>1
where [qij ] 1is the n-step transition matrix of an absorbing origin
left-continuous random walk, {Yn}. with increment p.g.f. fD(t)/t and
hence has positive drift. Thus we obtain
. J-1 5§ (n) n
vj(s) Pos (9(s)) D ngl 9,541 5 o (15)
and setting Q,, = J q‘"’ we have
1 n2l 1

0Ivy = pply, 4p- (15)




,v?? 4'4 1

Equation (14) yields le Qljtj = t(q-t)/(fp(t)-t) = t/(1 - d(t))
>

where d(t) = (fD(t) - q)/(t-q) is a p.g.f. Application of the dis-

crete renewal theorem yields

Lemma 2. If 1/2 < 6 <1 then

170 L(9) gy + (1-q)e/r(s)

and if & > 1 then

QIJ > (I’Q)/(a"l).

The asymptotic behavior of {Vj} now follows from (16). It is
shown in Pakes (1973) that
P(Yn < xB(n) + AnlY0=1) +q + (1-q) H(x) (n>e)
where 4 =0 {if 6§ <1, A=a-1 if 6 > 1 and H(e) is the

D.F. of the stable law whose characteristic function is

6(8) = expls™ (cos(ns/2))|0]%(1-10/0] ttan(ns/2))1, :
B(+*) 1is the inverse function of xG/L(x) and has the form
B(n) = nl/GM(n) where M(e) 1is S.V. at infinity. Using the repre-

sentation for {qgg)tj given in §6 of Pakes (1973) and mimicking

the proof of the local limit theorem for lattice distributions as
presented, for example, by Ibragimov and Linnik (1970), it can be
readily checked that the following holds:

sup [8(n)af})- (1-a)h((3-an)/B(n))]| = 0 (nss)  (17)

where h(x) = H'(x). We must now distinguish a number of cases.

(). _1/2 <8 < 1. Let n = xJJG/L(J) where xJ + x. Clearly

B(n) ~ Jxlls. and hence if {TJ} is a sequence of r.v.'s such that




Sl e gl
P(Tj n) qu /Qlj’ we obtain
(357L09) P(T,=x;3%/L(3)) =+ p(x) (18)
where p(x) = 6'11‘(6):('1/6 h(x'1/6) is a density function. This may
be seen by observing that L x'lldh(x'l/s)dx = GMh(l-G) where

@

Mh(e) = I xe"lh(x)dx is the Mellin transform of h(-). Now use the
o

formula (Kawata (1972), p. 272)

Mp(8) = (r(l-e))'1 I:x°exh(x)dx .

where xh(e) = exp(-G'les) is the L.S.T. of H(+), to obtain
Mh(l-s) = (F(G)]'l. Indeed it is easy to show that
Mp(e)= r(a)r(e)/cl'er(ce). Lemma 2 and (18) now yield

03 Z al?) exp(-on36L(3)) + £(6)

where £(0) = (:e' p(x)dx.

Under our present assumptions we have g¢g''(l1-) < « and
g'(1-) = A = (l-a)-l. It is readily checked that the condition
1/2 < § <1 implies

texp(Ae11'°L<J))1[g(exp(-ej“L(J))]1‘ T

Using (15) and (16) we can rewrite (6) as

E(s"'M>j)-(g(s)) (Ql Lj+1 z ql J*l sn)(uJ/U (3)]

and the subsequent result readily follows.
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Theorem 4. If 1/2 <6 <1 and v(j) = §%/L(j§) then

X
P(N - Aj < x v(j)|n > j§) » Iop(y)dy (j»=; x>0).

(ii). 1 < 8§ s 2. Now let n = j/a + ij(j) in (17), whence

A1+1/6 l+1/6)

B(1)P(Ty = 3/8 + x,B(9) = h(-xa

and finally
-1 (n) :
[exp(83/88(4))] Qp; n§1 Q13 expl-6n/B(J)1 ~ ¢(o)

where ¢g(6) = exp{é'lesA'l'G] is the moment generating function

- <]
J (exp ex) A1+1/6 h(-xA1+1/6)dx. A special case is f''(D-) < =

- OO

and b = DF''(D-) + a - a°

B(3) = (b3)1/2,

/e must now consider two cases. First assume that either

which implies that & = 2, and

1<8§<2 orif 6§ =2 then L(x) + ., Then in a similar manner

to case (i)

(exp(AeJ/B(J))ug(exp(-O/a(J))]1J > 1

which follows on observing that MN(x) -+ « when & = 2. The following

result is now apparent.

Theorem 5. If 1 <6 <2 and f''(D-) = « ¢then

P(N - A3 < xB(3)|M > 3) + 1 - H(=xal*&) (wcx<a),

For our final case assume that f''(D-) < ®», Letting

B= (f''(1-) + a - az)/(l - 0)3 we have

(exp(AOJ”z)llo(exp(-e.i'l/z))lJ - exp(892/2). f
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¥

|
Now let u=A+ A"l and o2 = B + bA'3. The following result
readily follows.
Theorem 6. If f''(D-) < « then

P(N - nj < xcjllle > 3) = sz}, (=w<x<e)

the standard normal distribution function.

| This is Green's Theorem 3 but he assumed that f(s) 1is finite
in |s| <D+ ¢ for some € > 0. Lemma 1 and (5) yield the follow-
ing analogue of Theorem 2.

| Theorem 7. Assuming only that o < 1,

|

!

Tim P(M < kx(50=k) 040 < xel),»1 (x> 1),

K >
Finally Lemmas 1 and 2 yield the following partial refinement of

Green's Theorem 1.

Theorem 8. If f'(D-) < « then

vim 03p(M > jis =k) = (0%-1)(1-a)/(a-1).

Jo
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